If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2=432
We move all terms to the left:
4x^2-(432)=0
a = 4; b = 0; c = -432;
Δ = b2-4ac
Δ = 02-4·4·(-432)
Δ = 6912
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6912}=\sqrt{2304*3}=\sqrt{2304}*\sqrt{3}=48\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-48\sqrt{3}}{2*4}=\frac{0-48\sqrt{3}}{8} =-\frac{48\sqrt{3}}{8} =-6\sqrt{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+48\sqrt{3}}{2*4}=\frac{0+48\sqrt{3}}{8} =\frac{48\sqrt{3}}{8} =6\sqrt{3} $
| 86=-7n-(7n-2) | | 6(8-7x)=-204 | | k/9.5=6.4/7.6 | | 3(2x+8)=6x+18 | | 6n-4n=14 | | 6(7x+6)=-90 | | n÷6-1=20 | | 8(c+10)=6(c+8) | | 2x/10+3=4x+3/5 | | Y^2-28y+-4=0 | | 1(195-3y)+6y=372 | | n÷6-1=10 | | 13x-19.5=10 | | 11b-6=-b-12 | | 200m-125m+48,250=50,00-175m | | 2/9=6/e | | -8g+27=-6g+7g | | -7(-8–6n)=140 | | X+3-4x=2(x+1) | | 16z-14z=6 | | -7g+28=-7g+7g | | Y^2+14y+9=0 | | 8.54+x=6.23 | | 18x=4(3x+36) | | b/6=25 | | X=-2/3y+60 | | 5-r=2-4r | | -61=a-59 | | 4(3r+4)=24 | | 21x=4(4x+70) | | (90-x)=x-16 | | 5-(6k-19)=-18 |